История кодирования информации

Кодирование информации

Кодсистема условных знаков (символов) для передачи, обработки и хранения информации (сообщения).

Кодирование — процесс представления информации (сообщения) в виде кода.

Все множество символов, используемых для кодирования, называется алфавитом кодирования. Например, в памяти компьютера любая информация кодируется с помощью двоичного алфавита, содержащего всего два символа: 0 и 1.

Научные основы кодирования были описаны К.Шенноном, который исследовал процессы передачи информации по техническим каналам связи (теория связи, теория кодирования). При таком подходе кодирование понимается в более узком смысле: как переход от представления информации в одной символьной системе к представлению в другой символьной системе. Например, преобразование письменного русского текста в код азбуки Морзе для передачи его по телеграфной связи или радиосвязи. Такое кодирование связано с потребностью приспособить код к используемым техническим средствам работы с информацией (см. “Передача информации”).

Декодированиепроцесс обратного преобразования кода к форме исходной символьной системы, т.е. получение исходного сообщения. Например: перевод с азбуки Морзе в письменный текст на русском языке.

В более широком смысле декодирование — это процесс восстановления содержания закодированного сообщения. При таком подходе процесс записи текста с помощью русского алфавита можно рассматривать в качестве кодирования, а его чтение — это декодирование.

Цели кодирования и способы кодирования

Способ кодирования одного и того же сообщения может быть разным. Например, русский текст мы привыкли записывать с помощью русского алфавита. Но то же самое можно сделать, используя английский алфавит. Иногда так приходится поступать, посылая SMS по мобильному телефону, на котором нет русских букв, или отправляя электронное письмо на русском языке из-за границы, если на компьютере нет русифицированного программного обеспечения. Например, фразу: “Здравствуй, дорогой Саша!” приходится писать так: “Zdravstvui, dorogoi Sasha!”.

Существуют и другие способы кодирования речи. Например, стенографиябыстрый способ записи устной речи. Ею владеют лишь немногие специально обученные люди — стенографисты. Стенографист успевает записывать текст синхронно с речью говорящего человека. В стенограмме один значок обозначал целое слово или словосочетание. Расшифровать (декодировать) стенограмму может только стенографист.

Приведенные примеры иллюстрируют следующее важное правило: для кодирования одной и той же информации могут быть использованы разные способы; их выбор зависит от ряда обстоятельств: цели кодирования, условий, имеющихся средств. Если надо записать текст в темпе речи — используем стенографию; если надо передать текст за границу — используем английский алфавит; если надо представить текст в виде, понятном для грамотного русского человека, — записываем его по правилам грамматики русского языка.

Еще одно важное обстоятельство: выбор способа кодирования информации может быть связан с предполагаемым способом ее обработки. Покажем это на примере представления чисел — количественной информации. Используя русский алфавит, можно записать число “тридцать пять”. Используя же алфавит арабской десятичной системы счисления, пишем: “35”. Второй способ не только короче первого, но и удобнее для выполнения вычислений. Какая запись удобнее для выполнения расчетов: “тридцать пять умножить на сто двадцать семь” или “35 х 127”? Очевидно — вторая.

Однако если важно сохранить число без искажения, то его лучше записать в текстовой форме. Например, в денежных документах часто сумму записывают в текстовой форме: “триста семьдесят пять руб.” вместо “375 руб.”. Во втором случае искажение одной цифры изменит все значение. При использовании текстовой формы даже грамматические ошибки могут не изменить смысла. Например, малограмотный человек написал: “Тристо семдесять пят руб.”. Однако смысл сохранился.

В некоторых случаях возникает потребность засекречивания текста сообщения или документа, для того чтобы его не смогли прочитать те, кому не положено. Это называется защитой от несанкционированного доступа. В таком случае секретный текст шифруется. В давние времена шифрование называлось тайнописью. Шифрование представляет собой процесс превращения открытого текста в зашифрованный, а дешифрование — процесс обратного преобразования, при котором восстанавливается исходный текст. Шифрование — это тоже кодирование, но с засекреченным методом, известным только источнику и адресату. Методами шифрования занимается наука под названием криптография (см. “Криптография”).

История технических способов кодирования информации

С появлением технических средств хранения и передачи информации возникли новые идеи и приемы кодирования. Первым техническим средством передачи информации на расстояние стал телеграф, изобретенный в 1837 году американцем Сэмюэлем Морзе. Телеграфное сообщение — это последовательность электрических сигналов, передаваемая от одного телеграфного аппарата по проводам к другому телеграфному аппарату. Эти технические обстоятельства привели С.Морзе к идее использования всего двух видов сигналов — короткого и длинного — для кодирования сообщения, передаваемого по линиям телеграфной связи.

Сэмюэль Финли Бриз Морзе (1791–1872), США

Такой способ кодирования получил название азбуки Морзе. В ней каждая буква алфавита кодируется последовательностью коротких сигналов (точек) и длинных сигналов (тире). Буквы отделяются друг от друга паузами — отсутствием сигналов.

Самым знаменитым телеграфным сообщением является сигнал бедствия “SOS” (Save Our Souls — спасите наши души). Вот как он выглядит в коде азбуки Морзе, применяемом к английскому алфавиту:

Три точки (буква S), три тире (буква О), три точки (буква S). Две паузы отделяют буквы друг от друга.

На рисунке показана азбука Морзе применительно к русскому алфавиту. Специальных знаков препинания не было. Их записывали словами: “тчк” — точка, “зпт” — запятая и т.п.

Характерной особенностью азбуки Морзе является переменная длина кода разных букв, поэтому код Морзе называют неравномерным кодом. Буквы, которые встречаются в тексте чаще, имеют более короткий код, чем редкие буквы. Например, код буквы “Е” — одна точка, а код твердого знака состоит из шести знаков. Это сделано для того, чтобы сократить длину всего сообщения. Но из-за переменной длины кода букв возникает проблема отделения букв друг от друга в тексте. Поэтому приходится для разделения использовать паузу (пропуск). Следовательно, телеграфный алфавит Морзе является троичным, т.к. в нем используется три знака: точка, тире, пропуск.

Равномерный телеграфный код был изобретен французом Жаном Морисом Бодо в конце XIX века. В нем использовалось всего два разных вида сигналов. Не важно, как их назвать: точка и тире, плюс и минус, ноль и единица. Это два отличающихся друг от друга электрических сигнала. Длина кода всех символов одинаковая и равна пяти. В таком случае не возникает проблемы отделения букв друг от друга: каждая пятерка сигналов — это знак текста. Поэтому пропуск не нужен.

Жан Морис Эмиль Бодо (1845–1903), Франция

Код Бодо — это первый в истории техники способ двоичного кодирования информации. Благодаря этой идее удалось создать буквопечатающий телеграфный аппарат, имеющий вид пишущей машинки. Нажатие на клавишу с определенной буквой вырабатывает соответствующий пятиимпульсный сигнал, который передается по линии связи. Принимающий аппарат под воздействием этого сигнала печатает ту же букву на бумажной ленте.

В современных компьютерах для кодирования текстов также применяется равномерный двоичный код (см. “Системы кодирования текста”).

Методические рекомендации

Тема кодирования информации может быть представлена в учебной программе на всех этапах изучения информатики в школе.

В пропедевтическом курсе ученикам чаще предлагаются задачи, не связанные с компьютерным кодированием данных и носящие, в некотором смысле, игровую форму. Например, на основании кодовой таблицы азбуки Морзе можно предлагать как задачи кодирования (закодировать русский текст с помощью азбуки Морзе), так и декодирования (расшифровать текст, закодированный с помощью азбуки Морзе).

Выполнение таких заданий можно интерпретировать как работу шифровальщика, предлагая различные несложные ключи шифрования. Например, буквенно-цифровой, заменяя каждую букву ее порядковым номером в алфавите. Кроме того, для полноценного кодирования текста в алфавит следует внести знаки препинания и другие символы. Предложите ученикам придумать способ для отличия строчных букв от прописных.

При выполнении таких заданий следует обратить внимание учеников на то, что необходим разделительный символ — пробел, поскольку код оказывается неравномерным: какие-то буквы шифруются одной цифрой, какие-то — двумя.

Предложите ученикам подумать о том, как можно обойтись без разделения букв в коде. Эти размышления должны привести к идее равномерного кода, в котором каждый символ кодируется двумя десятичными цифрами: А — 01, Б — 02 и т.д.

Подборки задач на кодирование и шифрование информации имеются в ряде учебных пособий для школы [4].

В базовом курсе информатики для основной школы тема кодирования в большей степени связывается с темой представления в компьютере различных типов данных: чисел, текстов, изображения, звука (см. “Информационные технологии” ).

В старших классах в содержании общеобразовательного или элективного курса могут быть подробнее затронуты вопросы, связанные с теорией кодирования, разработанной К.Шенноном в рамках теории информации. Здесь существует целый ряд интересных задач, понимание которых требует повышенного уровня математической и программистской подготовки учащихся. Это проблемы экономного кодирования, универсального алгоритма кодирования, кодирования с исправлением ошибок. Подробно многие из этих вопросов раскрываются в учебном пособии “Математические основы информатики” [1].

Читать еще:  Кумкват польза и вред для организма

1. Андреева Е.В., Босова Л.Л., Фалина И.Н. Математические основы информатики. Элективный курс. М.: БИНОМ. Лаборатория Знаний, 2005.

2. Бешенков С.А., Ракитина Е.А. Информатика. Систематический курс. Учебник для 10-го класса. М.: Лаборатория Базовых Знаний, 2001, 57 с.

3. Винер Н. Кибернетика, или Управление и связь в животном и машине. М.: Советское радио, 1968, 201 с.

4. Информатика. Задачник-практикум в 2 т. / Под ред. И.Г. Семакина, Е.К. Хеннера. Т. 1. М.: БИНОМ. Лаборатория Знаний, 2005.

5. Кузнецов А.А., Бешенков С.А., Ракитина Е.А., Матвеева Н.В., Милохина Л.В. Непрерывный курс информатики (концепция, система модулей, типовая программа). Информатика и образование, № 1, 2005.

6. Математический энциклопедический словарь. Раздел: “Словарь школьной информатики”. М.: Советская энциклопедия, 1988.

7. Фридланд А.Я. Информатика: процессы, системы, ресурсы. М.: БИНОМ. Лаборатория Знаний, 2003.

Кодирование информации

Предварительный просмотр:

НОУ СПО НОВОУРЕНГОЙСКИЙ ТЕХНИКУМ ГАЗОВОЙ ПРОМЫШЛЕННОСТИ

Студентка группы АП-13

Клочкова Нина Николаевна

г. Новый Уренгой

2014г.

Фундаментальной чертой цивилизации является рост производства, потребления и накопления информации во всех отраслях человеческой деятельности. Вся жизнь человека, так или иначе, связана с получением, накоплением и обработкой информации. Чтобы человек не делал: читает ли он книгу, смотрит ли он телевизор, разговаривает, он постоянно и непрерывно получает и обрабатывает информацию.

Любой живой организм, в том числе человек, является носителем генетической информации, которая передаётся по наследству. Генетическая информация хранится во всех клетках организма, в молекулах ДНК (дезоксирибонуклеиновой кислоты). Молекула ДНК человека включает в себя около трёх миллиардов пар нуклеотидов, и в ней закодирована вся информация об организме человека: его внешность, здоровье или предрасположенность к болезням, способности и т.д.

Человек воспринимает окружающий мир, т.е. получает информацию, с помощью органов чувств. Чтобы правильно ориентироваться в мире, он запоминает полученные сведения, т.е. хранит информацию; человек принимает решения, т.е. обрабатывает информацию, а при общении с другими людьми – передаёт и принимает информацию. Человек живёт в мире информации.

Для любой операции с информацией (даже такой простой, как сохранение) она должна быть как-то представлена (записана, зафиксирована). Этот процесс имеет специальное название – кодирование информации.

Актуальность нашего исследования определяется необходимостью рассматривать вопросы, связанные с кодированием информации, в виду их большой практической значимостью. Это определило выбор темы исследования «Кодирование информации» .

Новизна исследования заключается в том, что нами собраны и уточнены многообразие окружающих человека кодов.

Цель исследования: теоретически обосновать и подтвердить многообразие окружающих человека кодов, роль и определение области практического применения кодирования информации.

Объектом нашего исследования является кодирование информации.

Предметом исследования многообразие окружающих человека кодов.

Гипотеза исследования базируется на предположении, что р оль кодирования информации в жизни человека практически значима .

В процессе исследования решались следующие задачи :

  1. Определить виды различных кодировок информации.
  2. Изучить проблему: как можно кодировать информацию и зачем это делать .
  3. Определить роль информации в жизни человека.

Практическая значимость: данная работа может быть использована в качестве дополнительного материала при рассмотрении вопроса о кодировании информации.

Методы исследования: теоретические (анализ исторических очерков по информатике, криптографии, различных энциклопедий; моделирование; анализ, синтез и обобщение полученных данных), эмпирические (прогнозирование).

Понятие кода, кодирования, декодирования

Составляя информационную модель объекта или явления, мы должны договориться о том, как понимать те или иные обозначения. То есть договориться о виде представления информации.

Человек выражает свои мысли в виде предложений, составленных из слов. Они являются алфавитным представлением информации.

Код — набор условных обозначений для представления информации.

Кодирование — процесс представления информации в виде кода (представление символов одного алфавита символами другого; переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки).

Обратное преобразование называется декодированием. Для общения друг с другом мы используем код — русский язык. При разговоре этот код передается звуками, при письме — буквами. Водитель передает сигнал с помощью гудка или миганием фар. Вы встречаетесь с кодированием информации при переходе дороги в виде сигналов светофора.

Таким образом, кодирование сводиться к использованию совокупности символов по строго определенным правилам.

Способ кодирования зависит от цели, ради которой оно осуществляется: сокращение записи; засекречивание (шифровка) информации; удобство обработки и т. п.

Существуют три основных способа кодирования текста:

графический – с помощью специальных рисунков или значков;

числовой – с помощью чисел;

символьный – с помощью символов того же алфавита, что и исходный текст.

Знак – это метка, предмет, которым обозначается что-нибудь (буква, цифра, отверстие). Знак вместе с его значением называют символом. Существует много классификаций знаков ( Приложение 1 ).

Наиболее значимым для развития техники оказался способ представления информации с помощью кода, состоящего всего из двух символов: 0 и 1.

Одну и ту же информацию можно выразить разными способами.

  • Если прибор находится под высоким напряжением, то требуется оставить предупреждающий знак (рисунок).
  • На оживлённом перекрестке регулировщик помогает избежать аварии с помощью жестов.
  • В театре пантомимы вся информация передаётся зрителю исключительно с помощью мимики и жестов.
  • Если тонет корабль, то передаётся сигнал «SOS» (…- — — …).
  • На флоте помимо азбуки Морзе используют семафорную и флажковую сигнализацию .

Набор знаков, в котором определен их порядок, называется алфавитом.

Существует множество алфавитов:

  • алфавит кириллических букв (А, Б, В, Г, Д, …);
  • алфавит латинских букв (A, B, C, D, …);
  • алфавит десятичных цифр (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) и др.

Имеются, однако, наборы знаков, для которых нет какого-то общепринятого порядка:

  • набор знаков азбуки Брайля (для слепых);
  • набор китайских идеограмм;
  • набор знаков планет;
  • набор знаков генетического кода (А, Ц, Г, Т).

Особенно важное значение имеют наборы, состоящие всего из двух знаков:

  • пара знаков (+, -);
  • пара знаков (точка «.», тире «-»);
  • пара цифр (0, 1).

Таким образом, кодирование информации – это процесс формирования определенного представления информации. Значимость кодирования возросла в последние десятилетия в связи с внедрением ЭВМ.

Кодирование и история – первые шаги

Коды появились в глубокой древности в виде криптограмм (по-гречески — тайнописи), когда ими пользовались для засекречивания важного сообщения от тех, кому оно не было предназначено. Уже знаменитый греческий историк Геродот (V век до н. э.) приводил примеры писем, понятных лишь для одного адресата. Спартанцы имели специальный механический прибор, при помощи которого важные сообщения можно было писать особым способом, обеспечивающим сохранение тайны. Собственная секретная азбука была у Юлия Цезаря. В средние века и эпоху Возрождения над изобретением тайных шифров трудились многие выдающиеся люди, в их числе философ Фрэнсис Бэкон, крупные математики Франсуа Виет, Джероламо Кардано, Джон Валлис.

С течением времени начали появляться по-настоящему сложные шифры. Один из них, употребляемый и поныне, связан с именем ученого аббата из Вюрцбурга Тритемиуса, которого к занятиям криптографией побуждало, быть может, не только монастырское уединение, но и потребность сохранять от огласки некоторые духовные тайны. Различные хитроумные приемы кодирования применяли шифровальщики при папском дворе и дворах европейских королей. Вместе с искусством шифрования развивалось и искусство дешифровки, или, как говорят, криптоанализа.

Секретные шифры являются неотъемлемой принадлежностью многих детективных романов, в которых действуют изощренные в хитрости шпионы. Писатель-романтик Эдгар По, которого иногда причисляют к создателям детективного жанра, в своем рассказе «Золотой жук» в художественной форме изложил простейшие приемы шифрования и расшифровки сообщений.

С появление компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Письменность и арифметика – есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Многообразие окружающих человека кодов и их роль в жизни человека

Зачем люди кодируют информацию?

— скрыть от других (шифры);

— записать короче (аббревиатура: Что такое ООН? Организация Объединенных Наций );

— для удобства передачи и обработки. (К ак передать информацию по телеграфу? Букву в электрический провод никак не запихнешь, значит, надо представить эту букву так, чтобы ее удобно было передать с помощью электрического тока ).

От чего зависит способ кодирования информации?

Способ кодирования (форма представления) информации зависит от цели, ради которой осуществляется кодирование. Такими целями могут быть сокращение записи, засекречивание (шифровка) информации, удобство обработки и т.п.

Читать еще:  Лабильная артериальная гипертензия

Рассмотрим многообразие кодов и их практическое применение в жизни человека.

Стенография – это скоростное письмо особыми знаками, настолько краткими, что ими можно записать живую речь. Стенография пришла к нам из древнейших времен. Ещё в Древнем Египте скорописцы записывали речь фараонов. Широкое распространение стенография получила в Древней Греции. В 1883 г. В Акрополе была найдена мраморная плита, на которой были высечены стенографические знаки. По мнению учёных, эти записи были сделаны в 350 г. до н.э. Но общепризнанным днём рождения стенографии считается 5 декабря 63 года до н.э. Тогда в Древнем Риме возникла необходимость дословной записи устной речи. Автором древнеримской стенографии считается Тирон – секретарь знаменитого оратора Цицерона.

В современном мире, несмотря на обилие средств механической фиксации слова (магнитофонов, диктофонов) владение навыками стенографии по-прежнему ценится. Мы записываем в среднем в пять раз медленнее, чем говорим. Стенография же ликвидирует этот разрыв. Она особенно полезна при конспектировании лекций, публичных выступлений, бесед, составлении докладов, подготовке статей и т.п.

Известно немало случаев, когда стенография оказывала неоценимую помощь людям разных профессий ( Приложение 2 ).

Каждый, кто когда-нибудь смотрел кино об американском Западе XIX-го века, знает, что первым методом кодирования, широко применяемым для преобразования символов и текстов в электронный вид, был метод, предложенный Морзе ( Приложение 3 ).

В наше время широко используется телефонный план нумерации. В России используется закрытая десятизначная нумерация. Это значит, что любой полный телефонный номер с кодом региона или мобильной сети должен иметь 10 цифр. Это называется Национальный телефонный номер. При звонке на телефон с отличным от «домашнего» кодом региона понадобится дополнительно набирать код выхода на междугороднюю связь («8»).

В последнее время очень актуален вопрос о персональных данных. Персональные данные человека записаны в его паспорте. Под фотографией в паспорте на просвет просматриваются магнитные метки с записанной информацией, которая считывается только электронным способом и недоступна владельцу документа. Подписываясь под этой графой в паспорте (пока не заполняемой по техническим причинам), человек даёт согласие на присвоение ему кода вместо имени, т.е. производится замена имени числом.

С развитием информационной техники, широким внедрением средств вычислительной техники во многие сферы деятельности все острее встаёт вопрос быстрого и надёжного ввода информации. Ручной ввод кода изделия требует больших затрат ручного труда, времени, часто приводит к ошибкам.

Все мы, чаще или реже, но проходим в магазине через кассу, чтобы оплатить выбранные товары. И наверняка каждый из нас хоть раз да обратил внимание, как кассир освещает какие-то полоски на упаковке лучом из какого-то устройства и только потом называет сумму оплаты.

Полоски – это штрих-код , а устройство, испускающее лучи, – это сканер. Он считывает информацию со штрих — кода и передаёт её на экран кассового аппарата. Дело в том, что в больших магазинах и супермаркетах перечень товаров с информацией о каждом из них находится в памяти специального компьютера. К этому компьютеру подсоединены кассовые аппараты, также представляющие собой специализированные компьютеры.

Каждому товару присвоен уникальный номер, зашифрованный в штрих — коде. Сканер считывает этот номер со штрих — кода и передаёт его в главный компьютер, который извлекает из памяти и передаёт кассовому аппарату наименование товара и цену. Главный компьютер ведёт также учёт проданных и оставшихся товаров. Поэтому на упаковке каждого из купленных в магазине товаров (на пакете, бутылке, банке и т.д.) мы обязательно находим штрих-код.

Это своеобразный товарный знак, предназначенный для автоматического считывания.

Каждый штрих-код является уникальным в мировом масштабе и содержит основную информацию о товаре . Штрих-код составляет главную часть автоматизированной технологии идентификации.

В настоящее время штриховые коды широко используются не только при производстве и в торговле товарами, но и во многих отраслях промышленного производства.

Товарный штриховой код присваивается продукции (товару) на этапе запуска его в производстве. Штрих – коды получили широкое практическое применение почти во всех сферах деятельности человека ( Приложение 5 ).

Компьютерный диалект используется в основном для неформального общения её членов, поэтому возникла необходимость передачи эмоций и даже мимики пишущего. В обычном тексте сделать это достаточно сложно, из-за чего и появились специфические знаки препинания (так называемые смайлики). Для их чтения лучше всего немного наклонить голову влево: тогда можно увидеть стилизованный портрет компьютерщика. Интересна история создания смайлика ( Приложение 6 ).

Смайлики (от smile – улыбка) в Интернете называют значки, составленные из знаков препинания, букв и цифр, обозначающие какие-то эмоции.

Смайлик – это лучший способ передать ваши чувства и эмоции при виртуальном общении! Маленькие забавные рожицы, которые вставляют в текст, избавляют от необходимости писать излияния ваших переживаний. Считается, что смайлик для Интернета – всё равно, что для человечества колесо. Без него невозможно обойтись ни в одной форме виртуального общения. Он крайне прост в употреблении, информативен и при всей своей простоте даёт широкий простор воображению. Неудивительно, что его переняли sms-коммуникация, реклама, дизайн, обычная поста, при обмене записками на уроках.

Смайлики настолько прочно вошли в нашу жизнь, что перекочевали из виртуального пространства в науки. Так в психологии, смайлики используют для обозначения типов темпераментов или отслеживают настроение человека.

1. Кодирование — история и первые шаги

Коды появились в глубокой древности в виде криптограмм (по-гречески — тайнописи), когда ими пользовались для засекречивания важного сообщения от тех, кому оно не было предназначено. Уже знаменитый греческий историк Геродот (V век до н. э.) приводил примеры писем, понятных лишь для одного адресата. Спартанцы имели специальный механический прибор, при помощи которого важные сообщения можно было писать особым способом, обеспечивающим сохранение тайны. Собственная секретная азбука была у Юлия Цезаря. В средние века и эпоху Возрождения над изобретением тайных шифров трудились многие выдающиеся люди, в их числе философ Фрэнсис Бэкон, крупные математики Франсуа Виет, Джероламо Кардано, Джон Валлис.

С течением времени начали появляться по-настоящему сложные шифры. Один из них, употребляемый и поныне, связан с именем ученого аббата из Вюрцбурга Тритемиуса, которого к занятиям криптографией побуждало, быть может, не только монастырское уединение, но и потребность сохранять от огласки некоторые духовные тайны. Различные хитроумные приемы кодирования применяли шифровальщики при папском дворе и дворах европейских королей. Вместе с искусством шифрования развивалось и искусство дешифровки, или, как говорят, криптоанализа.

Секретные шифры являются неотъемлемой принадлежностью многих детективных романов, в которых действуют изощренные в хитрости шпионы. Писатель-романтик Эдгар По, которого иногда причисляют к создателям детективного жанра, в своем рассказе «Золотой жук» в художественной форме изложил простейшие приемы шифрования и расшифровки сообщений. Эдгар По относился к проблеме расшифровки оптимистически, вложив в уста своего героя следующую фразу: «. едва ли разуму человека дано загадать та кую загадку, которую разум другого его собрата, направленный должным образом, не смог бы раскрыть. Прямо скажу, если текст зашифрован без грубых ошибок и документ в приличной сохранности, я больше ни в чем не нуждаюсь; последующие трудности для меня просто не существуют». Столетие спустя это высказывание было опровергнуто ученым, заложившим основы теории информации, Клодом Шенноном. Шеннон показал, как можно построить криптограмму, которая не поддается никакой расшифровке, если, конечно, не известен способ ее составления.

О некоторых приемах криптографии и криптоанализа мы расскажем в следующем параграфе, в остальных частях книги речь будет идти в основном об ином направлении в кодировании, которое возникло уже в близкую нам эпоху. Связано оно с проблемой передачи сообщений по линиям связи, без которых (т. е. без телеграфа, телефона, радио, телевидения и т. д.) немыслимо наше нынешнее существование. В задачу такого кодирования, как уже говорилось, входит отнюдь не засекречивание сообщений, а иная цель: сделать передачу сообщений быстрой, удобной и надежной. Предназначенное для этой цели кодирующее устройство сопоставляет каждому символу передаваемого текста, а иногда и целым словам или фразам (сообщениям) определенную комбинацию сигналов (приемлемую для передачи по данному каналу связи), называемую кодом или кодовым словом. При этом операцию перевода сообщений в определенные последовательности сигналов называют кодированием, а обратную операцию, восстанавливающую по принятым сигналам (кодовым словам) передаваемые сообщения, — декодированием.

Заметим сразу же, что различные символы или сообщения должны кодироваться различными кодовыми словами, в противном случае по кодовым словам нельзя было бы восстановить передаваемые сообщения.

Исторически первый код, предназначенный для передачи сообщений, связан с именем изобретателя телеграфного аппарата Сэмюэля Морзе и известен всем как азбука Морзе. В этом коде каждой букве или цифре сопоставляется своя последовательность из кратковременных (называемых точками) и длительных (тире) импульсов тока, разделяемых паузами. Другой код, столь же широко распространенный в телеграфии (код Бодо), использует для кодирования два элементарных сигнала — импульс и паузу, при этом сопоставляемые буквам кодовые слова состоят из пяти таких сигналов.

Читать еще:  Лечение алкоголизма отзывы

Коды, использующие два различных элементарных сигнала, называются двоичными. Удобно бывает, отвлекаясь от их физической природы, обозначать эти два сигнала символами 0 и 1. Тогда кодовые слова можно представлять как последовательности из нулей и единиц.

Двоичное кодирование тесно связано с принципом дихотомии (деления пополам). Поясним этот принцип на примере.

Некто задумал число, заключенное между 0 и 7. Угадывающему разрешено задавать вопросы, ответы на которые даются лишь в форме «да» или «нет». Каким образом следует задавать вопросы, чтобы возможно быстрее узнать задуманное число?

Самый бесхитростный путь — перебирать числа в любом порядке, надеясь на удачу. В этом случае при везении может хватить и одного вопроса, но если не повезет, то может понадобиться и целых семь. Поэтому не будем рассчитывать на везение и постараемся построить такую систему вопросов, чтобы любой из ответов — «да» или «нет» — давал нам одинаковую (пусть сначала и неполную) информацию о задуманном числе. Например, первый вопрос может быть таким: «Заключено ли задуманное число в пределах от 0 до 3?» Оба ответа — и «да» и «нет» — одинаково приближают нас к цели: в любом случае остаются четыре возможности для неизвестного числа (а первоначально их было восемь).

Если на первый вопрос получен утвердительный ответ, то во второй раз можно спросить: «Не является ли задуманное число нулем или единицей?»; если же ответ был отрицательным, спросим: «Не является ли задуманное число четверкой или пятеркой»? В любом случае после ответа на второй вопрос останется выбор из двух возможностей. Для того чтобы его осуществить, достаточно одного вопроса. Итак, для угадывания задуманного числа, каким бы оно ни было, достаточно трех вопросов (каждый из них выясняет, содержится ли задуманное число в «нижней» половине заключающего его промежутка). Можно показать, что меньшего числа вопросов недостаточно.

Если возможные ответы «да» или «нет» обозначить условно символами 0 и 1, то ответы запишутся в виде последовательности, состоящей из нулей и единиц. Так, например, если задуманное число было нулем, то на каждый из трех вопросов ответом будет «да». Трем «да» соответствует последовательность 000.

Если было задумано число 3, то ответами будут «да», «нет», «нет», т. е. числу 3 соответствует последовательность 011. По результатам ответов можно составить следующую таблицу:


Таблица 1

Читатель, знакомый с двоичной системой счисления, узнает в нижней строке двоичную запись соответствующих чисел верхней строки.

Заметим, что вместо множества чисел от 0 до 7 можно рассматривать любое множество из восьми сообщений, и каждое из них мы можем закодировать последовательностями из нулей и единиц длины 3. Если использовать более длинные двоичные последовательности, то ими в принципе можно закодировать любое конечное множество сообщений.

Действительно, число двоичных последовательностей длины 3 равно 2 3 = 8 (все они приведены в таблице 1), двоичных последовательностей длины 4 вдвое больше — число их равно 2 4 = 16. Вообще, число двоичных последовательностей длины n равно 2 n . Поэтому, если требуется закодировать нулями и единицами, к примеру, 125 сообщений, то для этого с избытком хватит двоичных последовательностей длины 7 (их в нашем распоряжении имеется 2 7 = 128). Из этого примера становится ясно, что М сообщений можно закодировать двоичными последовательностями длины п тогда и только тогда, когда выполняется условие 2 n ≥ М, т. е. когда n ≥ log2M.

Первый, кто понял, что для кодирования достаточно двух символов, был Фрэнсис Бэкон. Двоичный код, который он использовал в криптографических целях, содержал пятиразрядные (как и в коде Бодо) слова, составленные из символов 0, L.

Сказанное здесь — это лишь первые подступы к проблеме кодирования, которой посвящена эта книга. Пока же отметим только, что наряду с двоичными кодами применяют коды, использующие не два, а большее число элементарных сигналов, или, как их еще называют, кодовых символов. Их число d называют основанием кода, а множество кодовых символов — кодовым алфавитом. При этом общее число n-буквенных слов, использующих d символов, вычисляется аналогично прежнему и равно d n .

Краткая история возникновения шифрования информации

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ЛНР

«ЛУГАНСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

Имени ВЛАДИМИРА ДАЛЯ»

КОНСПЕКТ ЛЕКЦИЙ

по дисциплине “Теория кодирования информации”

для студентов направления подготовки/специальности:

«09.03.04 – Программная инженерия»

Общий объем дисциплины – 180 часов, объем лекций – 36 часов.

Автор: ст. преп. Кийко А.В.

Лекция 1.

Тема: Теория кодирования: история возникновения.

1. История возникновения кодирования информации.

2. Краткая история возникновения шифрования информации.

История возникновения кодирования информации

Теория кодирования – это раздел теории информации, изучающий спосо-бы отображения дискретных сообщений сигналами в виде определенных сочетаний символов.

С глубокой древности люди искали эффективные способы передачи информации:

— движение факелов использовал древнегреческий историк Полибий (II в. до н.э., рис. 6.1);

Рис. 6.1 – Схема кодирования букв греческого алфавита с помощью двух групп факелов.

— оптический телеграф – семафор – впервые использовал Клод Шапп в 1791 г. (рис. 5.2);

Рис. 6.2 – Оптический семафор К. Шаппа и его телеграфный алфавит

— движение электромагнитной стрелки в электромагнитных телеграфных аппаратах впервые применили русский физик П.Л. Шиллинг (1832) и профессора Гёттингенского университета Вебер и Гаусс (1833, рис. 6.3);

Рис. 6.3 – Схема электромагнитного телеграфа П. Л. Шиллинга.

1 – источник тока (вольтов столб); 2 – клавиатура; 3 – магнитные стрелки;

4 – провод обратной связи; 5 – вызывное устройство.

— азбука и телеграфный аппарат Самюэла Морзе (1837, рис. 6.4);

Рис. 6.4 – Дерево кода Морзе – направо точка, налево тире.

— международный флажковый код для передачи информации оптическими сигналами впервые ввел капитан Фредерик Марьят в 1861 г. на основе свода корабельных сигналов (рис. 6.5);

Рис. 6.5 – Морская азбука сигнальных флажков

— беспроволочный телеграф (радиопередатчик) был изобретен А.С. Поповым в 1895 г. и Маркони в 1897 г. независимо друг от друга (рис. 6.6 и 6.7);

Рис. 6.6 – Схема прибора Попова: Т – трубочка с железными опилками; К – колокол звонка; М – молоточек; А – аккумулятор, подающий ток в трубочку с опилками; Э1 и Э2 – электромагниты; П – железная пластинка.

Схема передаточной станции Маркони Схема приемной станции Маркони

Рис. 6.7 – Схема прибора Маркони: отправительная станция (передатчик):

B – батарея аккумуляторов; I – индукционная катушка; S – вибратор;

A – антенна с металлическим баком на конце; M – мачта; E – цинковый лист; зарытый в землю. Справа – приемная станция: T – трубочка с никелевыми и

серебряными опилками; G – батарея, подающая в трубочку ток;

R – электрический звонок

— беспроволочный телефон, телевидение (1935), затем и ЭВМ – новые средства связи, появившиеся в XX в., с которыми связана новая эпоха в информатизации общества.

Краткая история возникновения шифрования информации

Одновременно с потребностью передавать информацию люди искали способы скрыть смысл передаваемых сообщений от посторонних любопытных глаз. Императоры, торговцы, политики и шпионы искали способы шифрования своих посланий. Образцы тайнописи можно встретить еще у Геродота (V в. до н. э.). К тайнописи – криптографии прибегал Гай Юлий Цезарь, заменяя в своих тайных записях одни буквы другими. Использовали шифрование не только древнегреческие жрецы, но и ученые Средневековья: математики итальянец Джероламо Кардано и француз Франсуа Виет, нидерландский гуманист, историк, юрист Гроций, выдающийся английский философ Фрэнсис Бэкон. Отцом криптографии считается архитектор Леон Баттиста Альберти (1404-1472), который ввел шифрующие коды и многоалфавитные подстановки.

Сэр Фрэнсис Бэкон (1561-1626), автор двухлитерного кода, доказал в 1580 г., что для передачи информации достаточно двух знаков. Также Ф. Бэкон сформулировал требования к шифру:

1. Шифр должен быть несложен, прост в работе;

2. Шифр должен быть надежен, труден для дешифровки посторонним;

3. Шифр должен быть скрытен, по возможности не должен вызывать подозрений.

Шифры Бэкона – сочетание шифрованного текста с дезинформацией в виде нулей. Таким образом, двузначные коды и шифры использовались задолго до появления ЭВМ.

Новый толчок развитию теории кодирования дало создание в 1948 году Клодом Эльвудом Шенноном (1916-2001) теории информации. Идеи, изложенные Шенноном в статье «Математическая теория связи», легли в основу современных теорий и техник обработки, передачи и хранения информации. Результаты его научных исследований способствовали развитию помехоустойчивого кодирования и простых методов декодирования сообщений.

Лекция 2.

Дата добавления: 2018-05-12 ; просмотров: 570 ; ЗАКАЗАТЬ РАБОТУ

Ссылка на основную публикацию
Adblock
detector